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Dyson’s Coulomb gas on a circle and intermediate eigenvalue 
statistics 

R Scharftg and F M Izrailevt 
t Universita Degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy 
4 Institute of Nuclear Physics, 630090 Novosibirsk, USSR 

Received 22 March 1989 

Abstract. Dyson’s two-dimensional Coulomb gas on the unit circle with inverse temperature 
p is investigated with the help of a Metropolis algorithm. Theoretical predictions for 
energy and specific heat are verified. The connection with the theory of ensembles of 
random unitary matrices with orthogonal, unitary or symplectic symmetry corresponding 
to = I ,  2, 4 is investigated in detail. New approximation formulae for the spacing 
distribution and the so-called delta statistics are proposed and found to be useful, not 
only in the three cases mentioned but also for all p between 0 and 4. Our approach does 
not give a fitting parameter like the Brody distribution but an approximation to the true 
p.  Moreover, it is especially useful in cases when the application of the Berry-Robnik 
distribution is baseless, namely for quantum systems with a completely chaotic classical 
limit that show intermediate eigenvalue statistics because of Anderson localisation. 

1. Introduction 

Currently an overwhelmingly large number of examples exist which prove the usefulness 
of random matrix theory (RMT) applied to quantum systems which are chaotic in 
the classical limit (Eckhardt 1988). RMT establishes the existence of three spectral 
universality classes connected with the three groups O(N), U(N) and, for even N, 
Sp(N), which leave ensembles of unitary or Hermitian N x N matrices invariant. 
The three ensembles of unitary matrices, which are already uniquely defined by this 
invariance property, were introduced by Dyson (1962a), who called them circular 
ensembles. They are commonly abbreviated COE, CUE and CSE. The corresponding 
ensembles of Hermitian N x N matrices need an additional specification to be unique 
(namely independent Gaussian distributions of the matrix elements) and are usually 
abbreviated GOE, G U E  and GSE. The most prominent difference between these ensembles 
is the degree p of eigenvalue repulsion, which depends only on the underlying symmetry 
group and is linear ( p  = 1) for COE and GOE, quadratic (p = 2) for CUE and GUE, and 
finally quartic (/I = 4) for CSE and GSE. 

While the Gaussian ensembles turned out to be appropriate for describing the 
spectral properties of ‘typical’ Hamiltonians with discrete spectra, which do not possess 
enough ‘good quantum numbers to diagonalise them in a physically simple basis, 
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the same holds true for circular ensembles and ‘typical’ unitary propagators of non- 
autonomous quantum dynamics. A fourth possibility of spectral behaviour, Poissonian 
distribution of eigenvalues, showing no repulsion ( p  = 0), seemed to be connected 
with quantum systems with an integrable classical limit and more than one degree of 
freedom (Berry and Tabor 1977). 

As the universal features of quantum systems concerning their eigenvalues (spacing 
distribution, spectral stiffness, fluctuation in the spectral staircase) and distribution of 
eigenvector components, and their relations to the symmetries of the quantum systems 
in question are now well understood, the ‘non-universal’ properties are beginning to 
receive attention. Such properties include, for example, the saturation of the stiffness 
and fluctuations of the spectral staircase and other peculiarities of quantum spectra 
depending on the short periodic orbits of the corresponding classical system, which are 
of course non-universal (Berry 1985). 

In this paper we turn instead to another class of experimental results that are in 
contrast to the mentioned picture of three universality classes, namely intermediate 
eigenvalue statistics, which can be described by a repulsion parameter p ranging 
between 0 and 4. Two groups of quantum systems show that there is need for 
intermediate values of /?. For quantum systems that are not completely chaotic in 
the classical limit one typically finds spacing distributions and so-called A statistics, 
measuring the spectral stiffness, that lie between two extremes, the Poissonian case 
(p  = 0) and the maximal quantum chaos (Izrailev 1986) which is attained in the case 
of the completely chaotic classical limit with p = 1, 2 or 4. On the other hand, a 
completely chaotic classical limit does not guarantee this limiting quantum behaviour, 
as is known from the kicked rotator. Localisation of the perturbed eigenfunctions 
in the unperturbed representation is the reason for suppression of maximal quantum 
chaos accompanied by intermediate p (Izrailev 1984, 1986, Feingold and Fishman 1987, 
Frahm and Mikeska 1988, Izrailev 1988). 

Two main ways are known to describe intermediate spacing distributions: the 
Brody distribution (Brody et a1 1981) and the Berry-Robnik distribution (Berry and 
Robnik 1984). The former is nothing but an interpolation formula to fit numerical 
results and only a limited amount of information can be drawn from the value of the 
fit parameter. Moreover, the Brody distribution is not appropriate to fit spectra which 
are intermediate in their properties between the orthogonal (p  = 1) and the symplectic 
(0 = 4) case. The Berry-Robnik distribution, on the other hand, was deduced under 
the assumption of co-existing regular and chaotic regions in classical phase space. This 
is not the case for the strongly kicked rotator which nevertheless can show intermediate 
eigenvalue statistics. 

We propose to go back to Dyson’s original idea of using a connection between 
the eigenvalue distribution for the three circular ensembles with /? = 1, 2, 4 and the 
partition function of a two-dimensional Coulomb gas on the unit circle with inverse 
temperature b. Dyson (1962b) used this connection to find the asymptotic behaviour 
of the spacing distributions for large spacings between neighbouring particles in the 
three cases mentioned. But now we have an application for the intermediate cases with 
0 I p 5 2, namely the localised kicked rotator with broken time-reversal symmetry 
(Izrailev 1986, 1987, 1988). For a generalisation to spin-dependent kicking potentials 
(Scharf 1989) one finds 0 I /? I 4. 

First we collect some results of random matrix theory (RMT) concerning eigenvalues, 
Then we briefly review Dyson’s work on the Coulomb gas on the circle and verify some 
theoretical results with the help of a Monte Carlo simulation. We state conjectures on 
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intermediate spacing distributions and A statistics and investigate them numerically in 
detail for f l  = 1, 2, 4 and over the whole range between 0 and 4. We use the conjectures 
to propose a new method to find the degree of level repulsion for experimental spectra, 
and discuss its usefulness for the investigation of quantum systems with (partially) 
localised eigenstates and a strongly chaotic classical limit. 

2. Spectral properties of unitary random matrices 

In this section we collect some results of RMT concerning eigenphases of unitary N x N 
matrices drawn from the ensembles COE or CUE or of 2N x 2N matrices drawn from the 
symplectic ensemble CSE. The eigenphases will be denoted by 8, with k = 1,2,. . . , N. 
In the symplectic case eigenvalues are twofold degenerate, so it suffices to give N 
eigenphases in this case, too. 

The joint distribution of eigenphases for the circular ensembles COE, CUE and CSE 
(b  = 1,2,4, respectively) is exactly given by (Mehta 1967) 

with the normalisation constant Z,v, 

given by Dyson (1 962a) 

zNP = r ( i  + P N / ~ )  [ r ( i  + p/2)]-". 

. .  

The eigenphases 8, possess a mean next-nearest-neighbour (NNN) spacing of 2n/N, 
but the distribution of normalised NNN spacings S, called P ( S ) ,  is known in closed 
form only for a few special cases. For N -P cc expansions in powers of S are possible 
(Mehta 1967, Dietz 1989); for example, up to order S7 (Dietz and Haake 1990): 

P , ( S )  = 

P2(S) = 371 S - E X  S + =&n6S6 - 0.2347S7 

P4(S) = 1 1.5448S4 - 26.0440S6. 

- &z4S3 + &n4S4 + & X ~ S '  - 0.2035S6 -0.1046S7 

(2.4) 
1 2 2  2 4 4  

For N --* cc Dyson (1962b) deduced the asymptotic behaviour of P B ( S )  for large S 

To have an approximation for P B ( S )  in a simple form it has become customary to 
use the Wigner surmise 
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with the constants Ab and Cp to be determined by normalisation and setting the mean 
of S to 1: (1) = (S) = 1. For the physically interesting cases one finds 

(2.7) 

Comparing the approximation (2.7) with the expansions (2.4) shows that even the 
slopes at S = 0 come out wrong. Nevertheless, the total error one makes by using (2.7) 
is less than 5%, which is enough for most practical purposes because it can be detected 
only with a sample containing more than about loo00 spacings. 

Another spectral property in respect of which the three ensembles behave differently 
is the so-called number variance which measures the fluctuations in the number n(L) 
of eigenvalues that a strip of length L contains: 

z~(L) = ( (n(L)  - L)’) (n(L)) = L. (2.8) 

Pandey (1979) gives, up to O(l/L),  

(2.9) 

ln(47cL) + y + 1 + - 
2712 

with y denoting Euler’s constant: y = 0.577 215 66. .  . . 

for historical reasons) which measures the stiffness of the spectral staircase 
Finally we give expressions for the so-called A statistics (or sometimes A3 statistics, 

(2.10) 

which should be minimised by changing A and B .  It can be shown (Pandey 1979) that 
there exists a connection between A8(L) and C$(L)  up to O(l /L)  

1 2  9 
4P71 

A f m  = jCp(L)  - 7 

and from this up to O(l/L) 

ln(2nL) + y - - - - 
8 4  

8 4  

(2.1 1) 

(2.12) 
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For reasons of completeness, we note the corresponding expressions for the Pois- 
sonian spectrum, formally setting fl = 0: 

P,(s) = e-' Xi(L) = L Ao(L) = L/15. (2.13) 

All these results have been verified for spectra of autonomous (Haller er a1 1984, 
Seligman et a1 1984, Berry and Robnik 1986) as well as kicked quantum dynamics 
(Izrailev 1986, Frahm and Mikeska 1986, Nakamura et a1 1986, Haake er a1 1987, KuS. 
et a1 1987) with a strongly chaotical classical limit for all cases /3 = 1, 2 and 4, although 
in the latter case up to now only for kicked dynamics (Scharf et a1 1988, Scharf 1989). 

Some of the previous formulae contain j? explicitly and the question arises as to 
whether they are valid not only for /3 = 1, 2 and 4 but also for intermediate p. This 
is the case for the normalisation constant Z N 8  (2.3). That the formula (2.5), which 
describes the behaviour of P 8 ( S )  for S B 1, also makes sense for intermediate p was 
shown by Dyson with the help of a thermodynamical model, which is introduced in 
the next section. 

3. Dyson's Coulomb gas on the unit circle 

Dyson (1962b) introduced the model of a gas of N equally charged particles moving on 
the unit circle and interacting via a Coulomb force in two dimensions. His aim was to 
investigate the properties of the phase distribution Q N B ( O I , .  . . , e,) mentioned in section 
2. The connection between the Coulomb gas and the distribution of eigenphases of 
the circular ensembles becomes obvious when looking at the partition function of the 
Coulomb gas 

with the potential energy W 

(3.1) 

l<lcks;h. 

The trivial momentum-dependent part of the partition function has been discarded. 
For /r = 1, 2 and 4, Z,'(p) is the normalisation constant of the joint distribution of 
eigenphases QNB(O, ,  . . .,e,) of the circular ensembles. But for the Coulomb gas p is 
allowed to take on any positive value. The minimum potential energy that the gas 
acquires in the zero-temperature limit (i.e. /3 4 30) can be shown to be WO = - $ N  In N .  
To have a finite expression for the potential energy in the thermodynamic limit (k + a), 
one defines a new energy scale and a new partition function 

2n 

" ( P )  = (2.)-, exp [-p( W - WO)] d e , .  . . de,. (3.3) 

Using (2.3) for Z,(p) one finds for the free energy per particle in the thermodynamic 
limit (Dyson 1962b, Mehta 1967) 
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with the abbreviation L(z)  = In r ( l  + 2 ) .  From this one calculates for the potential 
energy and specific heat per particle 

These last two formulae we need later for comparison with Monte Carlo simulations. 
Dyson’s main interest in investigating the Coulomb gas was to find an expression for 
the spacing distribution P N B ( S )  for N -+ S. He only partially succeeded in finding the 
asymptotic behaviour for S 4 1 (or more precisely pS 4 1) which we have already 
given in (2.5). 

Before closing this section, two general statements should be made. Allowing for 
further interaction terms between the particles on the circle, for example (Yukawa 1986) 

might change their distribution function, although a large class of interaction terms does 
not have any influence in the thermodynamic limit (Kamien et a1 1988). I t  was already 
recognised by Dyson that the same Coulomb gas constrained to move on an infinite 
straight line with an additional confining harmonic potential has a partition function 
of the same form as the normalisation integral of the joint eigenvalue distribution 
function of the Gaussian ensembles. 

In this paper we do not investigate the distribution of eigenvector components 
for the circular ensembles because the mapping to the Coulomb gas only involves the 
eigenvalues. But a generalisation of the results for the universal cases p = 1, 2 and 4 
(Izrailev 1987, Kui  et a1 1988) to the intermediate values is of great interest. 

4. Intermediate spacing distribution and A statistics 

Since, for p = 0, 1, 2 and 4, the spacing distribution P g ( S )  for a quantum dynamics 
with a chaotic classical limit behaves like SB for S 6 1, it is tempting to assume 
that this holds true for quantum systems showing intermediate spacing distribution 
with conveniently chosen positive p. But the non-analytic behaviour of SB in S = 0 
contradicts the results from almost degenerate perturbation theory, namely that the 
degree p of level repulsion depends only on the symmetries of the quantum dynamics 
in the subspace spanned by the near degenerate eigenfunctions which leads to fi = 1 , 2 ,  
and 4 or to p = 0 in the case of a perturbation with vanishing coupling between 
the eigenfunctions (Scharf et a1 1988). Therefore PB(S) - Sfl with a non-universal /? 
can be true at best on an intermediate scale 0 < So I S 6 1. On a finer scale the 
universal behaviour with P = 0, 1, 2 or 4 will finally dominate. In experiments only 
the intermediate scale is resolvable and therefore P p ( S )  - Sp might be worth testing. 

One of us has recently proposed (Izrailev 1988) using Dyson’s asymptotic result 
(2.5) for large S in slightly modified form together with the behaviour discussed for 
small S to obtain the following approximation for P B ( S )  for the whole range of spacings 
o < s < a :  



Dyson's Coulomb gas on a circle 969 

Figure 1. Dependence of the constants A (full curve) and B (broken curve) in spacing 
distribution (4.1) upon p. 

with the P-dependent constants A and B to be determined from normalisation and 
from (S) = 1. Figure 1 shows their dependence on P for the range of largest physical 
interest. The values of A and B for P = 1,2 and 4 are: A ,  = 1.198.. ., B ,  = 1.183.. ., 
A, = 1.369.. ., B ,  = 1.658.. ., A, = 1.551 . . ., B, = 2.71 1 . . .. Several examples for the 
form of the distribution itself will be given in section 7. 

Compared with the Brody distribution, the conjectured distribution (4.1) has the 
advantage that i t  shows the correct asymptotic behaviour in S -+ 30 for P > 1 and that 
fl  is not just a fitting parameter but has physical meaning, as will be shown in section 
7. In contrast to the Berry-Robnik distribution, i t  provides the possibility of having an 
intermediate spacing distribution without relying on classical phase space structures. 
This is important because, for example, the strongly kicked rotator, although it does not 
possess any non-chaotic structures of mentionable weight in the classical phase space, 
nevertheless shows intermediate statistics (0 < fl  < 1 with time-reversal invariance 
or 0 < /? < 2 without) which is in contrast to the prediction of the Berry-Robnik 
distribution. The explanation is that the eigenfunctions show Anderson localisation, an 
effect that is not accounted for in Berry-Robnik distribution. In addition to that the 
latter does not, in general, vanish at S = 0, which causes strong deviations for small S 
between experimental histograms and the Berry-Robnik distribution. This can only be 
remedied by additional ad hoc requirements (Robnik 1987). 

Turning now to the formulae (2.9) and (2.12) for C $ ( L )  and Ap(L) ,  the number 
variance and the A statistics, the following conjectures for 0 < fi  I 4 are tempting (up 
to O( 1 / L ) )  : 

For P -, 0 these approximate formulae do not give the correct linear Poissonian 
behaviour. Therefore one expects that they fail when P is too small. 
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5. Monte Carlo simulation of DysOn’s Coulomb gas on the circle 

To check the stated conjectures concerning the spacing distribution, the number vari- 
ance and the A statistics, we made a Monte Carlo simulation of Dyson’s Coulomb 
gas on the unit circle with N = 99 particles and inverse temperature p. We describe 
the Metropolis algorithm used (see, for example, Binder and Heermann 1988) only 
briefly. We started with different initial distributions of the particles on the circle 
(equally spaced, Poissonian-distributed spacings, positions calculated from eigenvalues 
of a random unitary matrix) to check the independence of our results from the initial 
distribution, The evolution of the dynamics was made in discrete time steps, each step 
containing the following substeps. 

(i) Calculate the energy W = W(8 , , . .  . , O N )  given by (3.2) for the set of particle 
positions (e , , .  . . , O N ) .  

(ii) Draw N random numbers ( r , , .  , , , I N ) ,  equally distributed in the interval [-r, r ]  
with r = 2n/N(Noise) (we present results for Noise = 0.1 and 0.2). 

(iii) Compute positions 0; = 8, + rk ( k  = 1,. . . , N). Because of the logarithmic 
singularities in W ,  the particle positions cannot change their order. Therefore, only 
sets of positions (e;, . . , ,Oh) that respect the original order are allowed. 

(iv) The energy W‘ = W(8’,, . . . ,eh) is calculated. If W’ < W ,  the particle positions 
take on the new values (e;, ..., Oh). But if W’ > W ,  then the Boltzmann factor 
4 = ep(w-w’) < 1 will be compared with another random number p, now equally 
distributed in [0, I ] .  If q > p the particle positions will take on the new values 
(e;,  . . . , eh), too. Otherwise the system remains unchanged. 

After waiting an appropriately chosen number of time steps for the system to relax 
into equilibrium, the sets of positions, generated in the course of time, can be used to 
calculate quantities of physical interest. The sampling of the positions should be done 
at times far enough apart for correlations to decay sufficiently. 

First we investigated the /3 dependence of the potential energy U (p )  and the specific 
heat per particle C(p)  and compared them with the theoretical predictions (3.5) to test 
the reliability of our simulation procedure. The results in figure 2 show that the 
experimental energies follow the theoretical prediction closely. Only for small p is there 
a systematic deviation which can be explained by the finite-size effects and prohibitively 
long relaxation times. As the specific heat C ( p )  is a measure of the fluctuation of the 
energy U ( p )  per particle in an infinite system, we expect for our small system only 
qualitative agreement between theory and experiment. With this restriction in mind 
the results shown in figure 2 are quite satisfactory. The behaviour of the specific heat 
and the potential energy upon changing p shows that our Monte Carlo simulations 
give reliable results. A clearcut dependence of these results on the degree G f  noise we 
used is not visible. 

After comparing the numerical results with quantities known analytically, we now 
proceed to quantities whose dependence on the inverse temperature p is not known in 
closed form. 

6. Results for /? = 1, 2 and 4 

We want to compare the results of our Monte Carlo simulation for N = 99 particles 
(or eigenphases) at an inverse temperature p = 1, 2 and 4 with the properties of 
the three corresponding universality classes from RMT. We focus our attention on the 
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I 
0 ,i 1 2 3 4 0 1 2 3 4 

0 P 

Figure 2. (a) Dependence of the mean potential energy per particle U ( B )  for a system 
of N = 99 particles with inverse temperature for Noise = 0.1 (open triangles) and 
Noise = 0.2 (open squares) compared with the theoretical prediction (3.5) (full curve). ( b )  
The same for the mean specific heat per particle C(@. 

spacing distribution, the A statistics and the number variance and use the approximate 
formulae (2.7), (2.12) and (2.9), respectively. As a measure of the differences between 
the experimental histograms for the spacing distribution and the theoretical prediction 
we calculate the x2 values, giving the sum of the relative variances between theory 
and experiment over all bins of the experimental histogram containing ten and more 
spacings. The remaining sparse bins we accumulated. As we sample the particle spacings 
for 100 uncorrelated configurations, the total number of spacings is 9900. With this 
statistics we do not yet expect to see differences between Wigner’s surmise (2.7) and the 
exact spacing distribution. We also used the conjectured distribution for P B ( S )  (4.1) and 
searched for the j? = Phisto that minimises the ,y2 values for the experimental histograms. 
Figure 3 shows the experimental histograms for P ( S )  in all three cases. It is compared 
with the Wigner surmise (2.7) and our conjecture (4.1). The deviation from experiment 
comes out slightly smaller for the latter one, but both theoretical predictions follow 
the experiment quite closely. Taking j? in the asymptotically correct distribution (4.1) 
as a fitting parameter, calling it Phisto and comparing it with the inverse temperature j? 
of the Coulomb gas, we see a good correspondence for fl  = 2 but slight deviations for 
j? = 1 and 4. This feature will be seen more clearly in the next section. 

Turning now to the A statistics, we compare the experimental results sampled over 
100 sets of particle positions with the theoretical prediction (2.12). We find good 
agreement for j? = 1, but excellent agreement for j? = 2 and 4 even down to L 2: 5 
although the theoretical predictions do not take into account terms of 0 ( 1 / L )  (see 
figure 4). This is in complete aggreement with the results for the time-reversal-invariant 
kicked top (j? = 1, 4) with chaotic classical limit (Scharf et a1 1988). 

Finally we turn to the number variance Xi(L) .  The fluctuations of the experimental 
values around the theoretical values (2.9) were larger than the fluctuations for the A 
statistics. Nevertheless, the three cases were clearly distinguishable from each other 
and results were not in contradiction with theoretical predictions. 
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Figure 3. Comparison between experimental his- 
tograms for the spacing distribution P ( S )  (9900 spac- 
ings, Noise = 0.2) and the Wigner surmise (2.7) (bro- 
ken curve) and the conjectured Ps(S) (4.1) (minimum 
xz fit: full curve) for: (a) /3 = 1, x i9  = 34.80 (Wigner) 
and x i9  = 22.27 (our conjecture with Phisto = 1.18); 
(b)  /3 = 2, x i l  = 19.87 (Wigner) and xi4 = 19.25 
(our conjecture with fihisto = 2.01); (c) /3 = 4, 

Figure 4. Comparison between experimental A statis- 
tics (9900 values, Noise = 0.2) and the theoretical 
prediction (2.12) for /3 = 1 (open triangles and dot- 

0 5 10 15 20 25 30 ted curve), /3 = 2 (asterisks and full curve) and /3 = 4 
(open squares and broken curve). L 
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7. Results for intermediate fl  

We come to the main part of our investigation, namely the behaviour of the interesting 
statistical properties of the Coulomb gas with inverse temperature P in the whole 
interval (0,4]. The results for the potential energy V ( P )  and the specific heat C(P) in 
section 5 have shown that the Monte Carlo simulation is reliable for the whole interval 
with the possible exception of /3 I 0 . 2 .  

First we compare histograms of experimental spacing distribution for intermediate 
inverse temperature P of the Coulomb gas with the conjectured spacing distribution 
(4.1). By minimising the x 2  value we determine an experimental P value called &to. 

In addition, we find error bars for Phlsto by fitting for x 2  values that correspond 
to 1% confidence (Abramowitz and Stegun 1965). We now have the possibility of 
comparing Phisto with the true 8, which is, of course, not known for intermediate 
spacing distributions stemming from quantum spectra. In figure 5 we present a few 
examples of histograms together with their minimum x 2  fitting distribution and the 
1% confidence fittings, These examples illustrate the fact that it is possible to fit 
experimental spacing distributions over the whole range of physically interesting P 
values with sufficiently small deviations when using the proposed distribution (4.1). 
Only for 0 < P I 0.2 does the conjectured distribution not seem to work well, but even 
here its deviations from the experimental histograms are not worse than those for the 
Brody distribution. 

Figure 6 collects these results. It shows the dependence of &,isto upon the inverse 
temperature P = over the range 0 P 5 4. As a good approximation, 
Phlsto z &herm holds and can be used for practical purposes if the exact fl  = ljtherm 
is unknown, as is usually the case. Two deviations from this simple relation can be 
noticed upon closer inspection. One is a slight underestimation of the true fl when using 
&lsto for large values of P. The other is a slight deviation for small values of fl  which 
amounts to an overestimation of the true /3 by using Phisto. Nevertheless figure 6 does 
show that the proposed spacing distribution (4.1) can be used over the whole range of 
physically relevant /3 values to get an approximation ljhls to  that describes the physics 
underlying the spacing distribution. For example, it can be used to find the scaling 
behaviour of the spacing distribution of systems with finite-dimensional Hilbert space 
that show a localisation-delocalisation transition for the eigenfunctions, and compare 
it with the scaling behaviour of the eigenfunctions themselves (Casati et a1 1990). 

Finally we check our conjecture (4.2) concerning the P dependence of the A statis- 
tics, which simply states 

1 
Ag(L) - - ln(L) +constant. (7.1) 

Therefore a value for P called Pdelta can be determined by a least-squares fit of 
the experimental A statistics, which we restricted to the interval 5 I L 5 31. The 
dependence of Pdelta on = Ptherm is shown in figure 7. The error bars are, in this case, 
not as easy to find as in the case of but they are quite large (k0.2). Once again 
we have as a good approximation /.Idelta z Ptherm. But the systematic deviations from 
this simple behaviour are the same as in the previous case: overestimation of the true 
P for small values and underestimation for large values of 0. 

Figure 8 shows the dependence of the constant term in (7.1) or (4.2), called Ag(l) 
for short, on fl  and compares it with the three theoretical constants given in (2.12). 
For small P this constant becomes more and more questionable, since the assumption 

P 
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Figure 5. Comparison between experimental histograms for P ( S )  for intermediate B (9900 
spacings, Noise = 0.1) and the conjectured Pp(S) (4.1) for minimum x 2  fit (full curve) and 
1%-confidence fits (broken curves) for: (a) j3 = 0.2, Bhlrto = 0.35 ( x i ,  = 44.49); ( b )  B = 0.5, 
Bhlsto = 0.68 (xi3 = 34.35); (C) /? = 0.7, Bhlsto = 0.79 (& = 24.99); ( d )  B = 1.5, Bhlsto = 1.57 
(& = 31.44); (e )  /? = 2.5, /?hlsto = 2.39 ( X i 4  16.31); If) B = 3.5, Bhlsto = 3.31 (xil = 18.51). 
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Figure 6. Dependence of phisto. gained from minimum xz fit of experimental histograms 
using conjectured spacing distribution (4.1), upon /? = &hem for: (a) Noised .1  with 
error bars from 1%-confidence fits; ( b )  N o i s e 4 . l  (open triangles) and Noise = 0.2 (open 
squares). 
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Figure 7. Dependence of Pdelta gained from a least- 
square fit of experimental A statistics using con- 
jecture (4.2) on P = ptherm for Noise = 0.1 (open 
triangles) and Noise = 0.2 (open squares). 
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Figure 8. Dependence of A6 ( L  = 1) gained from 
a least-square fit of experimental A statistics using 
conjecture (4.2) on = ,!?therm for Noise = 0.1 (open 
triangles) and Noise = 0.2 (open squares). Large 
crosses indicate theoretical values from (2.12). 

(7.1) is baseless for p = 0, as we already mentioned. But for 2 I p I 4 the numerical 
results show an interpolating behaviour between the theoretical values at p = 2 and 4, 
with which they nearly coincide. 
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8. Summary and discussion 

We have proposed a new approximation formula (4.1) for the spacing distribution of 
particle positions of Dyson’s two-dimensional Coulomb gas on the unit circle with 
inverse temperature /?, and have shown its usefulness with the help of Monte Carlo 
simulations. For the range 0.2 p 2.5 the inverse temperature &isto, found by 
least x2 fit of experimental spacing distributions with the conjectured distribution (4.1), 
showed satisfactory agreement with the ‘true p’. Slight overestimation for small and 
underestimation for large p can be taken into account to gauge the procedure in the 
range 0.1 I p I 4, if larger accuracy in determining p is needed. Comparison with the 
Brody distribution shows that distribution (4.1) is superior not only for p > 1, where 
the Brody distribution has the wrong asymptotic behaviour for S + a, but even for 

We also showed that it is possible to find the inverse temperature fi from the 
spectral stiffness (measured by the A statistics) of the particle positions of the gas. This 
was done with the help of conjecture (7,1), namely: Ag(L)  - (1/p) ln(L) + constant. 
Both these ways of measuring p are successful in the range 0.1 < p I 4, but fail in the 
high-temperature limit /? + 0. 

The partition function (2.2) of the Coulomb gas coincides, for p = 1,2 and 4, 
with the normalisation integrals of the eigenphase distributions for the three circular 
ensembles of random unitary matrices (COE, CUE and CSE, respectively). The usefulness 
of these three ensembles for describing spectral properties of kicked quantum systems 
with completely chaotic classical limit is well known (Izrailev 1986, Frahm and Mikeska 
1986, Izrailev 1987, Kui et a1 1987, Scharf er a1 1988, Haake et a1 1988). Many examples 
of kicked dynamics have been found which fall into one of these three universality 
classes, depending on anti-unitary symmetries of the dynamics. 

We suggest comparing properties of the Coulomb gas for intermediate p values, 
other than 1, 2 or 4, with spectral properties of kicked quantum systems with discrete 
spectra and chaotic classical limit, which nevertheless do not fall into one of the 
mentioned three universality classes. Fitting experimental spacing distributions with 
the conjectured distribution (4.1) and finding &to enables the determination of the ‘true 
p’ of the spectrum. This can be used, for example, to scrutinise changes in the spectral 
statistics upon changing parameters of the dynamics. If a quantum system shows, 
for example, dynamic localisation-like the kicked rotator on the torus for a spin-0 
(Izrailev 1986, Feingold and Fishman 1987, Izrailev 1987, Frahm and Mikeska 1988) or 
for a spin-: particle (Scharf 1989)-a reduction of p from the maximal possible value 
(1, 2, 4) is observed. The dependence of this reduction upon the degree of localisation 
can now be measured free of arbitrariness. Proposed scaling behaviour (Izrailev 1988) 
of spectral and localisation properties (Casati et al 1990) can be compared. 

0.1 < p I 1. 
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Note added in prooJ In the meantime Caurier and Grammatikos (1989) found quartic level repulsion (j3 = 4) 
also for an autonomous, fermion shell model Hamiltonian, therby completing the picture given at the end of 
section 2. Dietz and Haake (1990) calculated the Taylor expansion for the spacing distribution up to order 
S42 for j3 = 1,4 and order S3’ for /I = 2! 
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